REGIOSELECTIVE PROTECTION OF THREO-2,3-DIHYDROXYBUTANOIC ESTERS

Andreas Kirschning,^{*} Monika Kreimeyer, Hans-Peter Blanke

Institut für Organische Chemie der Technischen Universität Clausthal, Leibnizstraße 6, D-38678 Clausthal-Zellerfeld, Germany

(Received in UK 16 September 1993)

Abstract: Monoprotected derivatives of optically pure diolester 1 are regioselectively constructed by lipasebased methodologies as well as via the stannylene acetal of 1.

Methods for the preparation of optically active methyl 2,3-dihydroxybutanoates have lately attained considerable interest.1 As their isopropylidene and cyclohexylidene protected derivatives they have been widely employed in the synthesis of 6-deoxy sugars² as well as complex natural products.³

As part of our studies directed toward the de-novo synthesis of labelled carbohydrates, it has been necessary to develop synthetic pathways which differentiate between the two hydroxy groups of (2S, 3R) dihydroxybutanoic acid methyl ester 1. Regioselective α -O-sulfonylation and α -bromination of 1 have recently been described by *Sharpless et al.*⁴ Here we report on the preparation of optically active monoprotected methyl *three* diiydroxybutanoates'by enzymatic means and compare the results with conventional chemical methods based on the chemistry of stannylene acetals.

The optical purity of 1, which is easily accessable from L-threonine in two steps, 2d was established by converting it into its isopropylidene derivative followed by gc-analysis on a chiral 6-0-methyl-y-cyclodextrin column. Comparison with the racemate of 1 revealed an ee >99%.⁵

The use of lipases as routine chiral catalysts for esterification and ester hydrolysis is well documented.⁶ Both substrates, diol **1** ($[\alpha]_D^{22} = +8.8$ (c 1.2; CHCl₃)) and diacetate 2 ($[\alpha]_D^{22} = +19$ (c 1.08; CHCl₃)) may be employed for this methodology as outlined in Scheme 1. The latter was easily prepared in high yield under standard acylating conditions^{1b} or by irreversible transesterification using vinylacetate / dichloromethane (4:1) in the presence of lipase $PS⁷$. We studied a wide variety of enzymes⁷ in different organic solvents at varying temperatures for the selective monoacetylation of **1.** The best results were obtained with lipase AY 207 in vinylacetate / dichloromethane (4: 1) at 22 "C which left less than 5% unreacted material. As shown in Scheme 1 regioselective ester hydrolysis of 2 was also achieved with lipase AY 20 in 0.1 M phosphate buffer at 22 "C. Under these conditions, 18% of 2 remained unreacted. Surprisingly, both experiments predominantly gave the 3-acetoxy derivative 3a* (Scheme 1). We checked the ratio of both regioisomers 3a and **3b** at each stage of purification by gc- and ${}^{1}H$ NMR analysis. We found that acetyl migration which is a facile process commonly observed in polyols, did occur during work up under acidic conditions, e.g. chromatographic separation on silica gel usually gave uniform mixtures of monoacetates 3a and 3b in a ratio of 4:l. In contrast, we did **not** observe any acetyl migration for 3a under the typical silylating conditions which afforded 4a (oil; $\left[\alpha\right]_0$ 22 = -1.0 $(c 1.27; CHCl₃)$).

In addition we studied lipase-catalysed regioselective acetylation and deacetylation of the (2R, 3S) enantiomers of diolester **1** and its diacetate 2. For ent-1 none of the lipases used7 gave satisfactory results whereas *ent-2* could regioselectively be transformed under hydrolyzing conditions with lipase AY 20 (0.1 M phospate buffer, pH 7, 2d, 35°C, 82 %: (2R, 3S) 3a : 3b = 16:1) or lipase CC (0.1 M phospate buffer, pH 7, 7d, 35°C, 92 %: (2R, 3S) 3a: 3b > 20:1).

Scheme 1

a. NaNO₂, H₂SO₄, O^cC, 12h; then MeOH, HCl, 80°C, 4h, 54%; b. Ac₂O, pyridine, rt, 12h, 89% or lipase PS, CH₂=CHOAc / CH₂Cl₂ 4:1, rt, 4d, 92%; c. lipase AY 20, CH₂=CHOAc, CH₂Cl₂ 4:1, rt, 24d, (2S, 3R) 3a : 3b 5:1, 79%; d. lipase AY 20, 0.1M phosphate buffer pH 7, rt, 2.5d, (2S, 3R) 3a: 3b 6:1, 87%; e. ^{*t*}BuMe₂SiCl, imidazole, DMF, rt, 12h, 91%.

Another general and efficient method for monofunctionalization of diols is by electrophilic attack on $O.O'$ -dibutylstannylene acetals.⁹ Acetylation of the $O.O'$ -dibutylstannylene acetal 5 provided the monoacetylated esters 3a and 3b in a ratio of 11:1 in moderate yield (Table 1) When pivaloyl chloride was employed as the acylating agent the regioselectivity dropped to 2:1 in favor of $6a$.⁸ However, the ratio was dramatically improved by quantitatively converting 6b into 6a in refluxing toluene in the presence of a trace of silica gel.

In contrast, when 5 was benzylated in refluxing toluene in the presence of one equivalent of tetrabutylamonium iodide (TBAI), a complex mixture formed from which the 2- and 3-monobenzylated methyl esters 7a¹⁰ (oil; $[\alpha]_D^{23} = -26.4$ (c 1.26; CHCl₃)) and 7b¹⁰ (oil; $[\alpha]_D^{23} = -89.5$ (c 1.4; CHCl₃)) were isolated by column chromatography as well as both regioisomeric benzyloxy-hydroxy-benzylesters 9a,b. In accordance with Ohno and Nagashima¹⁰, activation of 5 by CsF via a pentacoordinated tin complex followed by benzylation with benzyl bromide and TBAI in DMF at rt afforded both monobenzylated methyl esters 7a and 7b in a ratio of 1.5:1. The regioselectivity was proven unambigously by acetylation of the remaining hydroxyl group of both isolated regioisomers under standard conditions giving 10a and 10b. In both cases H-2 and H-3 are shifted downfield in the ${}^{1}H$ NMR spectrum by about 1.1-1.3 ppm in comparison to the starting material.

In an analogous fashion, alkylation of 5 with methoxyethoxymethyl chloride (MEMCl) took place. In the absence of CsF, again a complex mixture of alkylated products was formed whereas activation by fluoride at -18°C in DMF afforded both monoacetals 8a (oil; $\left[\alpha\right]_0^{22}$ = -22.5 (c 1.27, CHCl₃) and 8b (oil $\left[\alpha\right]_0^{22}$ = -69.3 (c 1.18, CHCl₃) in a ratio of about 1:1 (Table 1).

In summary, the methods described here give access to fully differentiated optically pure methyl 2,3dihydroxybutanoates and further enhance their synthetic utility.

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support and Amano Pharmaceutical Co. for a gift of lipases. Analytical assistance by D. Icheln is gratefully acknowledged.

References and Notes

- (1) (a) Akita, H.; Kawaguchi, T.; Enoki, Y.; Gishi, T. Chem. Phamr. *Bull.* **1990, 38,323;(b)** Urnem- E.; Tsuchiya, T.; Umezawa, S. J. Antibiotics 1988, 41, 530; (c) Ibuka, T.; Nishii, S.; Yamamoto, Y. Chem. *hkpress* 1988, 3, 53.
- (2) (a) Kita, Y.; Itoh, F.; Tamura, 0.; Ke, Y. Y. *Tetraheahn Left* 1987, 28, 1431; (b) Iida, H.; Yamazaki, N.; Kibayashi, C. J 0%. *Chem.* **1986,51,4245; (c)** Fuganti, C.; Grasselli, P.; Pedroccbi-Fanton, G. J. Org *Chem.* **1986, 48, 909;** (d) Servi, S. J. Org. *Chem.* **1985, SO, 5865; (e)** Mukayama, T.; Goto, Y.; Shoda, S. Chem. Leti. **1983, 671; (Q** Fronza, G.; Fuganti, C.; Grasselli, P.; Marinoni, G. *Tetruhedron Ldt. 1979,3883.*
- (3) Roush, W. R.; Michaelides, M: R.; Fu Tai, D.; Lesur, B. M.; Chong, W. K.M.; Harris, D. J. J. *Am. Chem. Sot. 1989, III* ,2984.
- (4) Fleming, P. R.; Sharpless K. B. J. Org. Chem. 1991, 56, 2869, and references cited therein.
- (5) In contrast *Schurig* and coworkers encountered an anchimeric assistance imposed by the 3-hydroxy group during the diazotization of **1 in** the presence of chloride to afford a mixture of *2-* **and 3-chloro**hydroxybutanoic acid esters: Hintzer, K.; Koppenhoefer, B.; Schurig, V. J. Org. Chem. 1982, 47, 3850.
- (6) For reviews see: (a) Reidel, A.; **Waldmann, H. J** *Pmkt. Chem.* **1993, 335, 109; (b) Xie,** Z.-F. *Tetrahedron Asymmetry* 1991, 2, 733; (c) Crout, D. H. G.; Christen M. in *Modern Synthetic Methods* 1989 (R. Scheffold Ed.), Vof. 5, VHCA, 1989.
- (7) Following lipases were used: PS from *Pseudomonas fluorescens* and AY-20 from *Candida cylindracea (Amano* Pharmaceutical Co.), CC from Candida *cyhakacea* and **PP** from *Porcine Pancreas, type II* (Sigma Chemical Co.) and OF (Meito Sangyo Co., Ltd).
- (8) Esters 3a and 3b were separated by subliming the major fraction 3a from the crude product leaving behind the minor fraction 3b.

(2S, 3R) **3a**: mp= 41°C; $\left[\alpha\right]_0^{22}$ = +54 (c 1.2, CHCl₃) and $\left[\alpha\right]_0^{21}$ = -50 (c 1.05; CHCl₃) for the (2R, 3S) enantiomer; ¹H-NMR (CDCl₃; TMS= 0.0 ppm) δ : 5.23 (dq, J= 2.2, 6.4 Hz, 1H, 3-H), 4.13 (dd, J= 2.2, 7.6 Hz, 1H, 2-H), 3.78 (s, 3H, CO₂CH₃), 2. 90 (d, J= 7.6 Hz, 1H, OH), 2.02 (s, 3H, OAc), 1.36 $(d, J= 6.4 \text{ Hz}, 3H, 4-H)$; **3b** (mixed with **3a**): oil; ¹H-NMR (CDCl₃; TMS= 0.0 ppm) δ : 4.97 (d, $J= 3.6$) Hz, 1H, 2-H), 4.27 (dq, $J = 6.8$, 3.6 Hz, 1H, 3-H), 3.78 (s, 3H, CO₂CH₃), 2.54 (d, $J = 7.6$ Hz, 1H, OH) 2.20 (s, 3H, OAc), 1.28 (d, $J=6.8$ Hz; 3H, 4-H).

Esters **6a** and **6b** were separated by column chromatography on silica gel (hexane/ ethylacetate 4:1): (2S, 3R) 6a: mp= 36.5°C-38.5°C; $[\alpha]_D^{22} = +42$ (c 0.99, CHCl₃); ¹H-NMR (CDCl₃; TMS= 0.0 ppm) δ : 5.18 (dq, $J= 2.6$, 6.6 Hz, 1H, 3-H), 4.16 (dd, $J= 2.6$, 7.2 Hz, 1H, 2-H), 3.77 (s, 3H, CO₂CH₃), 2. 88 (d, $J= 7.2$ Hz, 1H, OH), 1.35 (d, $J= 6.6$ Hz, 3H, 4-H), 1.10 (s, 9H, 'Bu); **6b**: oil, $[\alpha]_D^{22} = -29$ (c 1.07, CHCl₃); ¹H-NMR (CDCl₃; TMS= 0.0 ppm) δ : 4.96 (d, J= 3.6 Hz, 1H, 2-H), 4.29 (dq, J= 6.6, 3.6 Hz, 1H, 3-H), 3.78 (s, 3H, CO₂CH₃), 2.15 (b, 1H, OH) 1.29 (s, 9H, 'Bu), 1.28 (d, J= 6.6 Hz; 3H, 4-H).

- (9) David, S.; Hanessian, S. Tetrahedron 1985, 41, 643.
- (10) Nagashima, N.; Ohno, M. Chem. *Pharm. Bull.* 1991,39, 1972.